

Flexibility Requirement in Indian power system

01st December 2017

Indian Grid...Large Footprint

Indian Power System

- Peak Demand ~ 160 GW
- Energy Met ~ 3.5 BUs/day
 - Hydro Gen. ~ 712 MU/day (Max.)
 - Wind Gen. ~ 310 MU/day (Max.)
- Generating Stations ~ 900 Nos.
- Generating Units ~ 2200 Nos.
- > 7000 Sub-stations,
- > 3100 transformers
- 10 Nos. HVDC Bi-pole/BtB
- > 100 nos. 765 kV lines
- > 1300 nos. 400 kV lines,
- > 3200 nos. 220 kV lines
- 26 ISTS transmission licensees

Indian Power Market

- Licensed Traders 43 Nos.
- Market Participants > 3000 Nos.
- Two Power Exchanges (PXs)
 - Indian Energy Exchange
 - Power Exchange of India Ltd.
- Open Access Volumes
 - Transactions ~ 45,000 Nos./yr.
 - Bilateral ~ 14,000 Nos.
 - Collective (PX) ~ 31,000 Nos.
- Energy ~ 100 BUs/yr.
 - Bilateral ~ 65 BUs
 - Collective (PX) ~ 35 BUs
- Short Term ~ 10 %

International Interconnections

Increasing trend of demand met

• Maximum, Minimum and Average Demand met pattern. • Hourly demand met pattern

Hourly Variability of Demand

Increasing Flexibility Requirement

- Peak demand increasing year after year
- Difference between daily peak and lean is showing an increasing trend
- Growth during peak hours is much more than lean hours
- Need for more flexible generation to counter this gap

Ramping in All India Demand

All India Thermal Generation

All India Hydro Generation

Z-axis

Solar Generation

Solar gen as % of total capacity

Flexibility index = ((Max-Min)/Max) over the years

Ancillary Services

Pumped Storage Plants in India

S. No.	Name of Project / State	Installed Capacity		Pumping	Reasons for
		No. of units x MW	Total (MW)	Operation	Pumping mode
	Kadana St. I&II Gujarat	2x60+2x60	240	Not working	Due to vibration problem
2	Nagarjuna Sagar Andhra Pradesh	7x100.80	705.60	Not working	Tail pool dam under construction
3	Kadamparai Tamil Nadu	4x100	400	Working	-
4	Panchet Hill - DVC	1x40	40	Not working	Tail pool dam not constructed
5	Bhira Maharashtra	1x150	150	Working	
6	Srisailam LBPH Andhra Pradsesh	6x150	900	Working	-
7	Sardar Sarovar Gujarat	6x200	1200	Not working	Tail pool dam not constructed
8	Purlia PSS West Bengal	4x225	900	Working	-
9	Ghatgar Maharashtra	2x125	250	Working	. s i
		Total	4785.60		

Source: "Large scale integration of Renewable Energy Sources-Way forward" Report by CEA

Pumped Storage

Provisions Regarding Ramping

- Provisions in the Indian Electricity Grid Code (IEGC):
 - Operating Code (Section 5.2):
 - System Security Aspects Ramping of
 - All thermal units greater than 200 MW.
 - All Hydro units greater than 10 MW
 - Sudden change in generation / load by the utilities of more than 100 MW without prior intimation to and consent of the RLDC.
 - Scheduling and Despatch Code (Section 6.4)
 - Generators to declare rate of ramping up / ramping down in a 15 minute block.
 - Acceptable ramping rate 200 MW/Hour (in NER 50 MW/Hour)

CEA Standard Technical Features of Super-Critical Units

- □ Ramp rate: + 3% per minute (above 30% loading)
- Technical minimum load of super critical units 40%
- Two shift operation mandated

Technical minimum

• CERC grid code fourth amendment regulations 2016

- Technical Minimum 55%
- Implementation is notified by CERC
- Beneficiaries (DISCOMs) are directed to compensate for the Heat rate degradation

S. No.	Unit loading as a percentage % of installed capacity of the unit	Increase in SHR for supercritical units (%)	Increase in SHR for sub – critical units (%)
1	85-100	Nil	Nil
2	75-84.99	1.25	2.25
3	65 -74.99	2	4
4	55-64.99	3	6

Increasing granularity of Despatch Interval

5-minutes scheduling:

- Reduced the steep ramps
- Eliminates sharp discreet changes
- Reduced frequency fluctuations
- Facilitates better load management
- Facilitates integration of renewables

Flexible Generation

• Hydro

- Plan and implement more pumped storage
- Operational norms to incentivize flexibility

Thermal

- Grid Code clauses on flexibility (ramp rate, minimum)
- Incentives for flexible generation
- Two-shift operation of thermal plants
- Primary, Secondary and Tertiary Controls

Renewables

- Low Voltage Ride Through (LVRT)
- Draft CEA standards notified

Flexible Transmission

HVDCs in India

- 4 back to back HVDCs
- 6 bipole HVDC links
- 1 MTDC
- 1 more planned
- CEA Transmission Planning Criterion (Section 18)
 - More than 2000
 MW over long
 distance more than
 700 km.
 - Corridors of AC lines carrying heavy power flows (total more than 5000 MW) 20

Signs of Inflexibility

- Difficulty in balancing demand and supply
 - Frequency excursions
- Renewable curtailment
 Inability to balance
- Area Balance Violations (Deviations)
- Electricity Markets
 - Price volatility

Source: Cochran, J. et al. (2012), "Flexibility in 21st Century Power Systems, A 21st Century Power Partnership Report". Golden, CO: National Renewable Energy Laboratory. <u>http://www.nrel.gov/docs/fy14osti/61721.pdf</u>

Way Forward

- Power systems are already flexible, designed to accommodate variable and uncertain load.
 - □ New actors RE, distributed generation, storage etc. to be accommodated
- Need for 'Flexible' Systems
 - Flexible Generation
 - **Flexible Transmission** FACTs, HVDC
 - **Flexible Distribution** Price responsive demand
 - Flexible Markets -
 - > More Frequent market operation, Ancillary services, Demand response

Policy / Regulatory Framework for Flexibility

- Measuring Flexibility
- Metrics for performance
- Incentivizing and paying for flexibility
- Policy support to anticipate flexibility needs and support system flexibility
- Flexibility considerations can be integrated into the design of procurement policies

Flexibility Requirement in Indian Power System

Power System Operation Corporation Limited New Delhi January 2016 https://posoco.in/download/flexibility r equirement in indian power system/? wpdmdl=711

Thank You